Some Remarks on Syllogistic, Dialectic, and the Study of Their History
نویسنده
چکیده
In this paper, I argue that one should approach the study of Ancient Logic, Greek, Medieval and Arabic through a better understanding of the relation between dialectic and syllogistic. No claims are made about these, however, except concerning Aristotle and the invention of syllogistic. Numerous defects of the early a-historical study of syllogistic by Łukasiewicz in terms of axiomatic systems are presented in section 2, that show its inappropriateness. It is further argued that a proper consideration of the context of Prior Analytics shows that it involved the common practice of dialectical games, a characterization of which, in terms of game semantics, is provided in section 3. In the concluding remarks, the interest of this new approach is illustrated by explaining aspects of Prior Analytics that had been hitherto left unexplained. صخللما بيج أبسع ّأ أطٔضّ ّأ أىاىْٓ ٌان ٛاْض هٓدكلا لطيلما ٘ضازد ٘بزاكم ٌّ أ اٍدافم تيلا ٘حّسطلاا ٗدٜافل ٘ضازدلا ِرٍ في ججاحأض سأكلا ٘ٓسظى ّ لدلجا ينب ٘نٜاكلا تاقلاعلل تلآّأتلا لضفا ًم اقلاطىا هّتت ٌا . ضقاىأ ًل ّ تأكطيلما ولت ٙلع ههحا ًل فْض ْطضزاب للعتت اطاكى لاا . ضتٔفٓشانْل ٘بزاكبم ٘صالخا بْٔعلا ًم يربن ددع ٙلع بٔكعتلا عكٓ ٘ضازدلا ِرٍ ًم ٕىاثلا هطكلا في بضايم يرغلا اَعباط زاَظلا ٕمْٔطنلاا لطيلا دّدح في ٘ٔيخزاتلالا . لىّلأا تلألحتلا مأض رخا ٌا فٔن زاَظاب ٕلاتلاب وْقا ّ ينٔعت حاترقاب ثلاثلا ٛصلجا في وْقأ ثٔح ٗسصتيلما ٘ٔلدلجا تاصقايلما ٘ضزامم ُبعلت تىان ٖرلا زّدلا ٘ٔنٍا ًع فصهٓ زابتعلااب باعلا اهٔتيسم لهش ٙلع اله . ٘صالخا داعبلاا ضعب يرطفتب ولذ ّ ٗدٓدلجا ٘بزاكلما ِرٍ لثم ًم ّٚدلجا هضسب ٘صلالخا وْكت ّ يرطفت ٙىدأ ٌّدب لبق ًم تنست تيلا ّ لىّلأا تلألحتلاب . Résumé Dans ce texte, j‟argumente en faveur de la thèse selon laquelle l‟étude de la logique ancienne, grecque, médiévale, et arabe doit être approchée à partir d‟une meilleure interprétation des relation entre dialectique et syllogistique. Je ne dis cependant rien de ces logiques, et ne fait valoir des points qu‟à propos d‟Aristote. De nombreux défauts de l‟approche anhistorique de Łukasiewicz, en termes de système axiomatique, sont présentés dans la section 2, pour en montrer le caractère inapproprié. Par la suite, je montre que la prise en compte du contexte des Analytiques premiers montre l‟importance du rôle joué par la pratique répandue des joutes dialectiques, dont une caractérisation en termes de sémantique des jeux est proposée dans la section 3. La conclusion illustre l‟intérêt de cette nouvelle approche en expliquant des aspects des Analytiques premiers laissés auparavant inexpliqués. 1 This paper is based on a lecture at a workshop on Arabic Logic in Medieval Philosophy, the Université de Kairouan, in April 2013. I would like to thank the organiser, Hamdi Mlika for his kind invitation. The paper is a sort of interim report on collaborative work with Benoît Castelnérac (Université de Sherbrooke), begun with (Castelnérac & Marion 2009), and refers to further work with Helge Rückert (Universität Mannheim) in (Marion & Rückert unpublished). I would like to thank both authors for their input, present in almost every paragraph, and especially Benoît Castelnérac, including also for his comments on an earlier version. In particular, the remarks of per impossibile syllogisms in Prior Analytics, in section 3 and the concluding remarks reflect our latest discussions. I use standard conventions for referring to Aristotle‟s or Plato‟s texts, and Robin Smith‟s translation of Aristotle‟s Prior Analytics, Oxford, Clarendon Press, 1989, as well as his translation of Topics, books A and in Topics Books I and VIII, Oxford, Clarendon Press, 1997. Otherwise, translations from Aristotle are from J. Barnes (ed.), The Complete Works of Aristotle. The Revised Oxford Translation, Princeton NJ, Princeton University Press, 1984 and those from Plato are from J. M. Cooper (ed.), Plato. Complete Works, Indianapolis IN, Hackett, 1997. AL-MUKHATABAT ISSN 1737—6432 ISSUE 08/2013 Page 10 The numerous figures [of the syllogism] resemble the flesh of a camel found on the summit of a mountain; the mountain is not easy to climb, nor the flesh plump enough to make it worth the hauling.
منابع مشابه
Taking the Enemy as Medicine: Dialectic and Therapy in the Work of Two Early Indian Doxographers
This article discusses the function of dialectic in religious history, focusing on the works of two major sixth century Indian intellectuals and doxographers Bhāviveka and Haribhadra Sūri, who belonged to the competing Madhyamaka Buddhist and Jaina traditions respectively. The article studies how these two figures used medical metaphors for their dialectic purposes.
متن کاملSome remarks on generalizations of classical prime submodules
Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. Suppose that $phi:S(M)rightarrow S(M)cup lbraceemptysetrbrace$ be a function where $S(M)$ is the set of all submodules of $M$. A proper submodule $N$ of $M$ is called an $(n-1, n)$-$phi$-classical prime submodule, if whenever $r_{1},ldots,r_{n-1}in R$ and $min M$ with $r_{1}ldots r_{n-1}min Nsetminusphi(N)$, then $r_{1...
متن کاملExplanation of Socratic dialectic aspects and teaching method: A strategy for improving the schools' teaching-learning process
The main purpose of this research is explanation of Socratic dialectic aspects and teaching method as a strategy for improving the schools' teaching-learning process. In this order, with a qualitative method in kind of descriptive-analytic (document analysis), firstly, Socratic dialectic and then the philosophical foundations of Socratic teaching method are described. Then, the feasibility stud...
متن کاملSOME REMARKS ON ALMOST UNISERIAL RINGS AND MODULES
In this paper we study almost uniserial rings and modules. An R−module M is called almost uniserial if any two nonisomorphic submodules are linearly ordered by inclusion. A ring R is an almost left uniserial ring if R_R is almost uniserial. We give some necessary and sufficient condition for an Artinian ring to be almost left uniserial.
متن کاملSOME REMARKS ON GENERALIZATIONS OF MULTIPLICATIVELY CLOSED SUBSETS
Let R be a commutative ring with identity and Mbe a unitary R-module. In this paper we generalize the conceptmultiplicatively closed subset of R and we study some propertiesof these genaralized subsets of M. Among the many results in thispaper, we generalize some well-known theorems about multiplicativelyclosed subsets of R to these generalized subsets of M. Alsowe show that some other well-kno...
متن کامل